High-Pressure Spinel Type $\mathbf{A l}_{2} \mathbf{S}_{3}$ and $\mathbf{M n A l}_{2} \mathbf{S}_{4}$

P. C. DONOHUE
Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

Received September 20, 1969

Abstract

New spinel type forms of $\mathrm{Al}_{2} \mathrm{~S}_{3}$ and $\mathrm{MnAl}_{2} \mathrm{~S}_{4}$ were prepared at pressures from 2 to 65 kb . The $\mathrm{Al}_{2} \mathrm{~S}_{3}$ was shown to exhibit a structure similar to $\beta-\mathrm{In}_{2} \mathrm{~S}_{3}$ in which ordered vacancies result in a super lattice with a tetragonal cell. The cell dimensions are $a=7.026 \pm 0.001 \AA, c=29.819 \pm 0.001 \AA$. Electrical measurements show semiconducting behavior with $\rho_{298{ }^{\circ} \mathrm{K}}=10^{9} \Omega \mathrm{~cm}, E a=0.3 \mathrm{eV}$. The spinel form of $\mathrm{MnAl}_{2} \mathrm{~S}_{4}$ cxhibits a range of stoichiometry as indicated by a range of cell dimension from $a=10.092 \pm 0.001 \AA$ to $a=10.010 \pm 0.001 \AA$. Resistivity and magnetic measurements indicate semiconducting and paramagnetic behavior.

Introduction

The compound $\mathrm{Al}_{2} \mathrm{~S}_{3}$ is known to form three polymorphs (1): a hexagonal α form, a related hexagonal β form that has a defect wurtzite-type structure, and a γ form having the corundum type structure. The coordination of Al in the α and β forms is tetrahedral, while it is octahedral in the corundum type. These are prepared at ambient pressure. A cubic spinel-type ($a=9.93 \pm 0.1 \AA$) $\mathrm{Al}_{2} \mathrm{~S}_{3}$ is reported (2) to form when $2 \mathrm{at} . \% \mathrm{As}$ is substituted for Al. The β form of indium sesquisulfide is known as a defect spinel-type structure $(3,4)$. It contains ordered vacancies that result in a superlattice; consequently, the unit cell dimensions are $a=7.61, c=32.24 \AA$.

A large series of thiospinel compounds is known; however, the compound $\mathrm{MnAl}_{2} \mathrm{~S}_{4}$ is reported to form a rhombohedral structure when prepared at ambient pressure (5). In this study the systems $\mathrm{Al}_{2} \mathrm{~S}_{3}$ and $\mathrm{MnAl}_{2} \mathrm{~S}_{4}$ were studied at high pressure.

Experimental

Reactions to prepare $\mathrm{Al}_{2} \mathrm{~S}_{3}$ were carried out, starting with $4 N$ purity Al powder, 50/200 mesh, and sulfur of 6 N purity. To prepare $\mathrm{MnAl}_{2} \mathrm{~S}_{4}$, the same reagents and either MnS or Mn and S were used.

Experiments run at 3000 atm or less were done in a vessel pressurized with compressed argon and internally heated by a platinum resistance furnace. The reactants were sealed in vacuo in heavy walled

Pyrex ${ }^{\circledR}$ tubing ($9-\mathrm{mm}$ o.d., $6-\mathrm{mm}$ i.d.) that was contained in a platinum jacket. The Pyrex is soft at $700^{\circ} \mathrm{C}$ and translates the pressure while acting as an inert container. Reaction cycles were typically as follows: 200 atm , heat to $700^{\circ} \mathrm{C}$, increase pressure to 3000 atm or less, increase temperature to $1000^{\circ} \mathrm{C}$, hold for the desired length of time, program cool, and quench. Quenching is cooling from operating temperature to room temperature in about five minutes. Reactions done at pressures higher than 3000 atm were performed in a tetrahedral anvil press of National Bureau of Standards design (6). The operating procedure has been described elsewhere (7).

The products of all reactions were studied by x-ray powder diffractometry using Debyc-Scherrer and Guinier techniques. Unit cell dimensions were refined using a computerized least-squares technique.

Resistivity measurements were done by a four probe technique described elsewhere (8). Magnetic susceptibility measurements were made using a vibrating sample magnetometer in fields of 16 kOe at temperatures from $77-298^{\circ} \mathrm{K}$.

Results and Discussion

A. $\mathrm{Al}_{2} \mathrm{~S}_{3}$

The elements were mixed in the ratio of $1 \mathrm{Al}: 2 \mathrm{~S}$ since excess S was found to enhance crystal growth and impede reaction of Al with the Pyrex tube.

TABLE I
X-Ray Diffraction Pattern of Tetragonal $\mathrm{Al}_{2} \mathrm{~S}_{3}$

$a=7.028 \pm 0.001 \AA$					$c=29.811 \pm 0.006 \AA$				
$h k l$	$d_{\text {calc }}$	$d_{\text {obsd }}$	$I_{\text {calc }}$	$I_{\text {obsd }}$	hkl	$d_{\text {calc }}$	$d_{\text {obsd }}$	$I_{\text {calc }}$	$I_{\text {obsd }}$
004	7.4528	7.4378	27	46	312	2.1983		9)	
101	6.8408	6.8530	31	36	305	$2.1805\}$	2.1802	19 \}	32
103	5.7382	5.7325	394	425	1013	2.1801		4	
112	4.7147	4.7060	24	83	314	2.1299	2.1292	17	13
105	4.5467	4.5576	16	21	228	2.0674		$5)$	
008	3.7264	3.7330	12	30	307	$2.0527\}$	2.0537	$1\}$	30
107	3.6423	3.6223	28	20	2111	2.0525)		20	
116	3.5137	3.4991	73	77	316	2.0288	20310	$23\}$	38
202	3.4204	-	<1	-	2012	2.0286	2.0310	11)	38
204	3.1786	-	6	-	1114	1.9573 \}	1.9445	8)	17
211	3.1259	-	16	-	321	1.9452 \}	1.9445	5)	17
213	2.9968 \}	3.0005	$390\}$	587	323	1.9129)		207	
109	$2.9963\}$	3.0005	141 ${ }^{\text {d }}$	587	309	1.9127	1.9128	11	588
206	2.8691	2.8707	730	757	1015	1.9124	1.9128	122 \}	588
215	2.7805	-	2	--	318	1.9088		15)	
208	2.5566 \}	25556	13)	24	0016	1.8632		$1)$	
1110	$2.5565\}$	2.5556	$2\}$	24	325	1.8528 \}	1.8527	16 \}	12
217	$2.5290\}$	2.5318	$4\}$	37	2113	1.8525)		1	
1011	$2.5286\}$	2.5318	4	37	2014	1.8211	-	<1	
220	2.4849 \}	2.4844	$1000\}$	1286	3110	1.7819		3)	
0012	2.4843 \}	2.4844	495 \}	1286	327	1.7725	1.7783	3 ,	29
224	2.3573	--	1	-	3011	1.7724		<1,	
301	2.3356	-	2	-	400	1.7571	17555	424\}	1284
303	2.2803	-	1	-	2212	1.7569 \}	1.7555	835 J	
219	2.2800	--	<1	-	402	1.7450	-	<1	-
2010	2.2733	-	<1	-	404	1.7102	-	3	-
310	2.2226	--	<1	-	411	1.7109	-	<1	-
1017	1.7014	--	<1	-	428	1.44817		37	
413	1.68017		17		3310	1.4480	1.4476	$1\}$	18
329	1.6800	1.6796	14 \}	57	4111	1.4429		$2)$	
2115	1.6798		30		4012	1.4345	1.4349	$240\}$	322
406	1.6566	-	<1	-	3116	1.4278)	1.4349	3)	322
3112	1.6564	-	<1	-	431	1.4041	-	<1	-
332	1.6465	-	2	-	501	1.4041	--	<1	-
2016	1.6461	-	<1	-	3017	1.4039	-	<1	--
415	1.6390	--	1	-	2119	1.4038	-	<1	-
3013	1.6388	-	1	-	503	1.39187		15	
408	1.5893	-	2	-	433	1.3918		<1	
417	1.5826	-	4	-	3215	1.3917	1.3917	37 \}	79
3211	1.5825	-	4	-	3021	1.3915		<1	
336	1.5716	-	3	-	4210	1.3902		<1	
1118	1.5712	-	3	-	512	1.3725	-	2	-
422	1.5629	--	<1	-	2020	1.3722	-	2	-
424	1.53787		$4)$		435	1.3682	-	5	-
3114	1.5376	15323	6	25	505	1.3682	-	<1	-
2117	1.5314	1.5323	10	25	4113	1.3681	-	2	-
1019	1.5313		1		514	1.3554	-	2	-
419	$1.5157)$		$32)$		4014	1.3553		<1	
3015	$1.5156\}$	1.5156	27 \}	74	507	1.3348		5	
4010	1.5137		<1		437	1.3348		<1	
426	1.4984		81		516	1.3282	1.3285	8	28
2018	1.4981		35		4212	1.3281		9	
2216	$1.4907\}$	1.4988	3 \}	291	3118	1.3280		8	
0020	1.4906		1						
3213	1.4852		1						

Reactions were run at pressures of 1,2 , and 3 kb at $1000^{\circ} \mathrm{C}$, hold 3 hr , cool 3 hr to $700^{\circ} \mathrm{C}$, and quenched. The products were washed with CS_{2} to remove excess S, leaving yellow-orange crystalline material. The Guinier x-ray diffraction patterns of the products of reactions run at 2 kb and 3 kb were similar and could be indexed on the basis of cubic unit cells $a=9.938 \pm 0.001 \AA$ in which only 16 of 24 reflections were used. The pattern was completely indexed when a tetragonal cell was used similar to that of $\beta-\mathrm{In}_{2} \mathrm{~S}_{3}$ in which a tetragonal $=a$ cubic $/ \sqrt{2}$ and c tetragonal $=3 a$ cubic. The refined parameters are $a=7.026 \pm 0.001, c=29.819 \pm 0.001 \AA$. In order to prove that the structure is similar to that of $\beta \mathrm{In}_{2} \mathrm{~S}_{3}$, intensities of the powder diffraction pattern were calculated (9) and compared to observed intensities. Intensities were gathered by tracing the peaks of a diffractometer pattern on to Cronaflex ${ }^{\circledR}$ drafting film No. IDF4, cutting out the peaks and weighing them. The diffractometer chart was obtained using a Norelco diffractometer with a bent crystal monochromator and $\mathrm{CuK} \alpha$ radiaton. Background was estimated by drawing a smooth curve. For the calculated intensities, position parameters reported for $\beta-\mathrm{In}_{2} \mathrm{~S}_{3}$ were used (4). No attempt was made to refine the parameters. The R factor defined as $R=\left|I_{\text {obsd }}-I_{\text {calc }}\right| / I_{\text {obsd }}$ is 17% which is sufficient to establish the similarity of the structure. The data are shown in Table I.

The product of the reaction run at 1 kb did not show the spinel type phase; thus, the pressure necessary for formation at $1000^{\circ} \mathrm{C}$. is somewhere between 1 and 2 kb . A reaction run at $1200^{\circ} \mathrm{C}, 65 \mathrm{~kb}$, 10 min , cool to $1000^{\circ} \mathrm{C}$., slow cool 3 hr to $700^{\circ} \mathrm{C}$ yielded a spinel type phase similar to that prepared at 2 kb . Good crystal growth occurred, and electrical resistivity measurements were made on a crystal. The resistivity showed semiconducting behavior $\rho_{0.298{ }^{\circ} \mathrm{K}}=1 \times 10^{9} \Omega \mathrm{~cm}$ with an activation energy $E_{a}=0.3 \mathrm{eV}$.

B. $\mathrm{MnAl}_{2} \mathrm{~S}_{4}$

A reaction starting with the elements in the ratio $2 \mathrm{Al} / \mathrm{Mn} / 5 \mathrm{~S}$ at $1000^{\circ} \mathrm{C}, 3 \mathrm{~kb}$ held for 5 hr , cool 3 hr to $700^{\circ} \mathrm{C}$, and quench yielded a mixture of phases. After washing with CS_{2} and $1: 1 \mathrm{HCl}$, orange crystals remained which gave a spinel type powder diffraction pattern $a=10.052 \pm 0.001 \AA$. The best samples of the compound were formed at higher pressure. The reaction of $2 \mathrm{~A} 1 / \mathrm{Mn} / 4 \mathrm{~S}$ at $1200^{\circ} \mathrm{C}$, 65 kb , held 1 hr , cool 3 hr to $1000^{\circ} \mathrm{C}$, and quench yielded orange and green material. The orange material showed a spinel type diffraction pattern, $a=10.092 \AA$, while the green material showed the
cubic α-MnS pattern. The density of the crystals was measured by a displacement technique in bromoform. Found $2.95 \mathrm{~g} / \mathrm{cm}^{3}$; calculated for $\mathrm{MnAl}_{2} \mathrm{~S}_{4}: 3.06 \mathrm{~g} / \mathrm{cm}^{3}$. It is apparent that the compound tolerates a large degree of nonstoichiometry.

Two reactions run at $30 \mathrm{~kb}, 1000^{\circ} \mathrm{C}$ hold 2 hr , quench, and starting with the reagents $0.5 \mathrm{MnS} /-$ $2 \mathrm{Al} / 3 \mathrm{~S}$ and $0.25 \mathrm{MnS} / 2 \mathrm{Al} / 3 \mathrm{~S}$ yielded nearly homogeneous products. The spinel type unit cell dimensions are $a=10.050 \pm 0.001 \AA$ and $a=10.010 \AA$ respectively, again illustrating nonstoichiometry.
Magnetic and electrical measurements were made on a sample prepared at $1000^{\circ} \mathrm{C}$ and 45 kb , held $2 \mathrm{hr} / Q$. The unit cell was refined to $a=10.052 \AA$, and a trace of $\alpha-\mathrm{MnS}$ was seen in the powder pattern. Resistivity measurements were made on a polycrystalline piece and showed semiconducting behavior $\rho_{2980^{\circ} \mathrm{K}}=1.2 \times 10^{10} \Omega \mathrm{~cm}, E_{a}=0.7 \mathrm{eV}$. The magnetic measurements showed paramagnetic behavior from $77-300^{\circ} \mathrm{K}$, with $\mathrm{C}=16.5 \times 10^{-3}$ emu ${ }^{\circ} \mathrm{K} / \mathrm{gOe}$ and $\theta=-116^{\circ} \mathrm{K}$. Assuming the formula $\mathrm{MnAl}_{2} \mathrm{~S}_{4}, \mu_{\text {eff }}^{2}=31.4 \mu \mathrm{~B}^{2} / \mathrm{f} w \mathrm{t} . \pm 2 \mu \mathrm{~B}^{2} / \mathrm{f}$ wt. When $\mu_{\text {eff }}^{2}$ is calculated for $\mathrm{MnAl}_{2} \mathrm{~S}_{4}$ using the formula for electron spin only and assuming high spin Mn^{2+}, then it is $35 \mu \mathrm{~B}^{2} / \mathrm{f} w \mathrm{t}$. The difference is consistent with the observed nonstoichiometry.

Acknowledgments

Dr. T. A. Bither and Dr. A. W. Sleight are thanked for helpful discussions. Magnetic measurements were made by Mrs. C. G. Frederick. Resistivity measurements were made by Mr. J. L. Gillson. Guinier camera patterns were taken by Miss M. S. Licis. Mr. C. L. Hoover is thanked for supervision of high pressure experiments.

References

1. J. Flahaut, Ann. Chim. Paris 7, 632 (1952).
2. H. Schäfer, G. Schäfer, and A. Weiss, Z. Anorg. Chem. 325, 77 (1963).
3. C. J. M. Rooymans, J. Inorg. Nucl. Chem. 11, 78 (1959).
4. G. A. Steigmann, H. H. Suthfrland, and I. Goodyear, Acta Cryst. 19, 967 (1965).
5. J. Flahaut, C. R. Acad. Sci. Paris 233, 1279 (1951).
6. E. C. Lloyd, U. O. Hutton, and D. P. Johnson, J. Res. Natl. Bur. Std. C63, 59 (1959).
7. T. A. Bither, C. T. Prewitt, J. L. Gillson, P. E. Bierstedt, R. B. Flippen, and H. S. Young, Solid State Commun. 4, 533 (1966).
8. T. A. Bither, J. L. Gillson, and H. S. Young, Inorg. Chem. 5, 1559 (1966).
9. W. K. Jeitschko and E. Parthé, Unpublished computer program for calculation of x-ray powder diffraction patterns.
